ORIGINAL PAPER

Storage performance of $\text{LiFe}_{1-x}\text{Mn}_x\text{PO}_4$ nanoplates (x=0, 0.5, and 1)

Kuppan Saravanan • Jagadese J. Vittal • M. V. Reddy • B. V. R. Chowdari • Palani Balaya

Received: 23 November 2009 / Revised: 8 February 2010 / Accepted: 12 February 2010 / Published online: 19 March 2010 © Springer-Verlag 2010

Abstract Although LiFePO₄ (LFP) is considered to be a potential cathode material for the lithium-ion batteries, its rate performance is significantly restricted by sluggish kinetics of electrons and lithium ions. Several attempts have been made so far to improve the performance of LiFePO₄ by reducing the grain size, doping with aliovalent atoms, and coating conductive materials such as carbon or RuO₂. We report here synthesis of LFP nanoplates by solvothermal method, tailoring the thickness as well as carbon coverage at surfaces to explore their influence on the storage performance. Due to the fact that Li^+ ion diffuses along the *b*-axis, solvothermal method was aimed to control the thickness of nanoplates across the *b*-axis. We synthesized several nanoplates with various plate thicknesses along *b*-axis; among those, nanoplates of LFP with \sim 30-nm-thick *b*-axis having thin (2–5 nm) and uniform layer of carbon coating exhibits high storage capacity as well as high rate performances. Thus, a favorable morphology for LiFePO₄ has been achieved via solvothermal method for fast insertion/extraction of Li⁺ as compared to spherical nanoparticles of carboncoated LFP. Galvanostatic cycling shows a capacity of

K. Saravanan · J. J. Vittal (⊠) Department of Chemistry, National University of Singapore, Singapore 117543, Singapore e-mail: chmjjv@nus.edu.sg

M. V. Reddy · B. V. R. Chowdari Department of Physics, National University of Singapore, Singapore 117542, Singapore

P. Balaya (⊠) Department of Mechanical Engineering, National University of Singapore, Singapore 117574, Singapore e-mail: mpepb@nus.edu.sg 164±5 mAh g⁻¹ at 0.1 C rate, 100 ± 5 mAh g⁻¹ at 10 C rate, and 46±5 mAh g⁻¹ at 30 C rate, with excellent capacity retention of up to 50 cycles. Further attempts have been made to synthesize LiMnPO₄ (LMP) as well as Li(Fe_{1-x}Mn_x)PO₄/C (x=0.5) nanoplates using solvothermal method. Although LiMnPO₄ does not exhibit high storage behavior comparable with that of LiFePO₄, the mixed systems have shown an impressive storage performance.

Keywords LiFePO₄/C · LiFe_{1-x}Mn_xPO₄ (x=0, 0.5 and 1) · Nanoplates · Solvothermal · Li-ion battery

Introduction

Olivine-based phosphates (LiMPO₄, M = Mn, Fe, Co and Ni) have been recognized as a promising family of cathode materials for lithium-ion batteries [1]. Among these, LiFePO₄ has attracted great attention due to a variety of advantages such as ease of synthesis, environmental benignness, low cost, and high flat potential during charge/discharge processes [2–8]. In spite of these advantages, the observed electrochemical performances of LiFePO₄ are found to be poor (storage capacity drops significantly at high current density) [6, 7] as LiFePO₄ is known to be a poor conductor of both electrons as well as ions [9-12]. It is reported based on *ab initio* [13] calculations as well as atomistic simulations [14, 15] that Li ions preferably move faster along the *b*-axis than along the *a*- or *c*-axes in the crystal with orthorhombic space group Pnma. On the other hand, transport measurements on single-crystalline LiFePO₄ by Amin et al. [11], further claims that Li⁺ ionic conductivity is nearly four orders of magnitude lower than the electronic conductivity along the b- and c-axes while it is many orders of magnitude

lower along the *a*-axis. Thus, in order to achieve high rate performance, it is mandatory to reduce the grain size along the *b*- and *c*-axes if not at least along the *b*-axis so that Li ions as well as electrons are extracted from the bulk instantly. Such a criteria of having a morphology with thin *b*-axis of the LiFePO₄ crystallites will result in high rate performances due to fast extraction of Li⁺ within the bulk while the exterior decoration of LiFePO₄ uses conductive materials such as carbon [16–19] or RuO₂ [7] enhances the electronic wiring among various particles. It is thus important to control the morphology of the LiFePO₄ crystallites to achieve favorable high rate performances.

This paper aims at presenting such a nanoarchitecture with controlled morphology in LiFePO₄ achieved through solvothermal synthesis route which provides feasibility of reducing the *b*-axis to the smallest possible thickness reported so far with uniform coating of carbon on the surface. We show here that the present synthetic approach enables extraction of both ions as well as electrons fast enough in LFP nanoplates, resulting in high rate performances and addresses the issues related to spherical particles exhibiting isotropic transport behavior with poor rate performances. In addition, we have synthesized nanoplates of the other member of olivine family, namely LiMnPO₄ and nanoplates of solid solutions of LiFe_{0.5}Mn_{0.5}PO₄, and evaluated their storage properties.

Experimental section

Synthesis

Carbon-coated thin nanoplates of LiFePO₄ were synthesized using solvothermal method. A stoichiometric mixture of starting materials, lithium dihydrogen phosphate (LiH₂PO₄, Aldrich), iron(II) oxalate dihydrate (FeC₂O₄·2H₂O Merck), and D-gluconic acid lactone ($C_6H_{10}O_6$, Aldrich), in the molar ratio of 1:1:5, respectively, were taken in the Teflon vessel; 25 mL of ethylene glycol was added and sealed tightly in a stainless-steel autoclave. The autoclave was heated to 250 °C for 8 h in an oven, and then it was allowed to cool down to ambient temperature. The black precipitates obtained were washed several times with ethanol and dried. Here Dgluconic acid lactone acts as carbon source, resulting in a uniform carbon coating on LiFePO₄. Under a similar condition, MnCO₃ (Merck) was used to synthesize LiMnPO₄, and in case of LiFe_{0.5}Mn_{0.5}PO₄, MnCO₃ and FeC₂O₄·2H₂O were used in an equimolar ratio. Assynthesized LiFe_{1-x}Mn_xPO₄/C was annealed at 450 °C for 4 h in an Ar-H₂ (95:5) atmosphere in order to carbonize the gluconic acid lactone completely and to increase the crystallinity of the samples. Carbon (10 wt.%) was found from the thermogravimetric and elemental analyses on LiFePO₄/C.

Structural and electrochemical characterization

X-ray powder diffraction (XRPD) patterns were obtained using a D5005 Bruker X-ray diffractometer equipped with Cu-K α radiation. The accelerating voltage and current were 40 kV and 40 mA, respectively. The scan speed of 0.015° s⁻¹ was used. Lattice parameters were obtained using TOPAS-R (version 2.1) software. Scanning electron microscopy (SEM) images were taken from a Jeol JSM-6700F field emission scanning electron microscope (FESEM) operated at 5 kV and 10 mA. For SEM analysis, the samples were coated with a 100-nm-thin platinum coating using DC sputtering. JEOL JEM-2010 was used to get the high-resolution transmission electron microscopy images to study the morphology and measure the carbon layer thickness of the LiFePO₄/C nanoplates. For electrochemical studies, composite electrodes were fabricated with the active material, super P carbon black, and binder (Kynar 2801) in the weight ratio 70:15:15 using N-methylpyrrolidone as solvent. Electrodes with thickness of 10 µm were prepared using an etched aluminum foil as current collector using doctor-blade technique. Lithium metal foil, 1 M LiPF₆ in ethylene carbonate, diethyl carbonate (1:1 V/V; Merck), and Celgard 2502 membrane were used as counter electrode, electrolyte, and separator, respectively, to assemble coin-type cells (size 2016) in Ar-filled glove box (MBraun, Germany). The geometrical area of the electrode was 2.0 cm². Details of cell fabrication have been described previously [20]. The active material content in the electrode was around ~2 mg. The cells were aged for 12 h before the measurement. Charge/discharge cycling at constant current mode was carried out using a computer-controlled Arbin battery tester (Model, BT2000, USA).

Result and discussion

Recently, various synthesis routes such as sol-gel [21, 22], hydrothermal [23], carbothermal [24], polyol method [25], coprecipitation [26, 27], freeze-drying [28], and microwave hydrothermal method [29–32] have been adopted to synthesize nanostructured LiFePO₄/C composite and to improve rate performance. Here, we adopt solvothermal method for synthesis of LiFePO₄, LiMnPO₄, and LiFe_{0.5}Mn_{0.5}PO₄ nanoplates.

LiFePO₄/C nanoplates were synthesized using solvothermal route [20]. The XRPD studies show single-phase formation of LiFePO₄ as seen in Fig. 1. All the peaks in the XRPD pattern were indexed with an orthorhombic space group, *Pnma*. The obtained lattice parameters of LiFePO₄/C are a=10.3317 Å; b=6.0083 Å; c=4.6946 Å, and the cell parameters compare well with those reported in the literature (JCPDS Card No. 83-2092).

Further, FESEM and transmission electron microscopy (TEM) techniques were used to characterize the morphology and thin layer of carbon coating on the surfaces of the crystallites. Figure 1b–d presents the FESEM and TEM images of LiFePO₄ nanoplates obtained from the solvothermal method. Figure 1b reveals that LiFePO₄ plates are with thicknesses of 30–40 nm. Figure 1c, d shows a uniform carbon coating with a thickness of 2–5 nm on LiFePO₄ nanoplates in contrast to other reports, where LiFePO₄ particles were synthesized by sol-gel method with nonuniform conductive carbon coating [7].

Figure 2a, b is the TEM image and SAED pattern of LiFePO₄ nanoplate, respectively. The SAED pattern, same as the [010] SAED pattern of LiFePO₄ reported by the Chen et al. [33], reveals that the plate is a LiFePO₄ single crystal with *b*-axis along the thinnest direction. The c^*/a^* ratio in the reciprocal lattice from Fig. 2b is found to be 2.20, identical to the a/c ratio of a LiFePO₄ crystal with a=1.0334 nm, b=0.6002 nm, and c=0.4695 nm. The large face of the plate (Fig. 2a) lies in the *ac* plane, and its normal is along the *b* direction. It is found that the thickness along the *a*- and *c*-axes is in the range 500–800 nm and 30–40 nm along the *b*-axis (average values based on measurements of about 30 crystallites). It is worth mentioning that the 30–40-nm-thick *b*-axis has been achieved through this solvothermal method.

Raman spectroscopy is a predominantly useful tool for analyzing the coated carbon on the near surface, especially at the D and G bands of carbon [34-36]. Figure 3 shows a characteristic Raman spectrum of LiFePO₄/C nanoplates synthesized by solvothermal method. A small band appears at 940 cm⁻¹ and is attributed to the symmetric stretching mode of PO₄³⁻ anion in LiFePO₄. Two broad and strong bands situated at 1,378 and 1,592 cm^{-1} are designated to the D (disordered) and G (graphene) bands of the residual carbon coated on the LiFePO₄ nanoplates, respectively [37-39]. Raman spectra of the LiFePO₄/C nanoplates are consistent with earlier reports. The relative intensity ratio between the D and G bands can be used to assess the content of sp³ and sp² carbon in the sample, in addition to the extent of carbon disorder in microcrystalline graphite. Doeff et al. [40–42] reported that increased amounts of sp²-type carbon or decreased D/G ratio greatly enhance the electronic conductivity, leading to the good discharge capacities and superior rate capability of LiFePO₄ cathodes. The I_D/I_G ratios of the LiFePO₄ nanoplates are found to be 0.781; this shows the larger amount of graphene clusters than the disordered carbon structure, which facilitates a better cell performance of LiFePO₄/C nanoplates as seen from Fig. 4 discussed in later section.

Fig. 2 a TEM image of the LiFePO₄/C plate with the *a* and *c* directions indicated and **b** the SAED pattern of the nanoplate

Charge–discharge electrochemical performance of a typical LiFePO₄/C versus Li cell is shown in Fig. 4 up to 50 cycles at a current density of 17 mA g⁻¹ (0.1 C rate) in the voltage range 2.3–4.3 V. During the first-charge (Li deintercalation) process, the voltage increased sharply to ~3.45 V from the open-circuit voltage (OCV=3.0 V) followed by a long plateau until about 125 mAh g⁻¹ (Fig. 4a) and then gradually increased to the cutoff voltage value, resulting in a storage capacity of 165 mAh g⁻¹ (quite close to the theoretical value of 170 mAh g⁻¹). The discharge curve shows a similar plateau region. The irreversible capacity loss between the first-charge and first-discharge reaction is only about 10 mAh g⁻¹. Quite less polarization of about 60 mV (Δ V) between two plateaus has been observed (Fig. 4a)

It is seen from Fig. 4b that the specific discharge capacities at the end of tenth cycle are 165 (\pm 5) mAh g⁻¹ at 0.1 C rate (17 mA g⁻¹) and ~ 46 (\pm 5) mAh g⁻¹ at 30 C rate (5,100 mA g⁻¹). These results are much better than those presented earlier by Dominique et al. [3] on LiFePO₄/C

Fig. 3 Raman spectrum of the LiFePO₄/C nanoplate

electrode material synthesized using sol-gel method and are very well in agreement with the results reported by Hu et al. [7] using LiFePO₄ coated with carbon as well as RuO₂ coating layers. It is worth mentioning that the present solvothermal synthesis approach allows us to avoid expensive RuO₂ coating to achieve high rate performance of LiFePO₄

The above results emphasize the need for optimizing the morphology and hence controlling the thickness of the baxis along which Li⁺ ion diffuses fast. Also, the present study highlights the necessity for the carbon coating on the surfaces of LiFePO₄. Such an ideal morphology results in a quite high performance at 30 C with a storage capacity of 46 mAh g^{-1} . While dealing with spherical particles of say our own ball-milled LiFePO4, it is clear that the poor performance is due to lack of uniform carbon coating. Although the ball-milled spherical samples have an ideal size of about 40-50 nm, favorable for the fast insertion and extraction of both Li⁺ and e⁻ into the bulk, it does not help in improving the electrochemical performances as the electronic conduction is still low enough to establish a highly conducting surface connectivity with neighboring particles. Thus, it is important to optimize not only the morphology but also conductive carbon surface coating in order to achieve a high rate performance of this cathode material.

Figure 5a, d shows the XRPD patterns of LiMnPO₄/C and LiFe_{0.5}Mn_{0.5}PO₄/C. XRPD patterns clearly reveal the singlephase formation of LiFe_{1-x}Mn_xPO₄ (x=1 and 0.5) nanoplates. All the peaks in the XRPD patterns were well indexed to the corresponding JCPDS pattern (see Fig. 5a, d). Unlike LFP, nanoplates of LMP are not self-assembled and are randomly oriented which is shown in Fig. 5b. The galvanostatic charge and discharge curves of LiMnPO₄/C and nanoplates at C/10 are shown in Fig. 5c. LMP nanoplates show a reversible discharge capacity of 47 ± 5 mAh g⁻¹, which is equivalent to 27% of the theoretical capacity of

Fig. 4 Galvanostatic charge–discharge cycling curves for LiFePO₄ (current density 17 mA/g; potential window 2.3–4.3 V): a solvothermal method with carbon coating, b rate performance of LiFePO₄/C (here 1 C refers to a capacity of 170 mA/g in 1 h)

171 mAh g⁻¹ of LMP. These galvanostatic charge–discharge results are comparable to that reported earlier [43–46]. This restricted electrochemical performance could be the result of very less intrinsic electronic conductivity and sluggish lithium diffusion kinetics within the LMP plates. In addition, the poor performance of LMP during discharge is attributed to the poor mechanical strength of the nanoplates upon Li insertion. On the other hand, LMP nanoplates prepared by Wang et al. [47] using polyol method performs well upon ball milling with carbon precursor. When compared with LMP/C, solid-solution

LiFe_{0.5}Mn_{0.5}PO₄/C nanoplates exhibit a better storage performance of 65 ± 5 mAh g⁻¹ with very less irreversible capacity loss under similar conditions. It is quite interesting to note that the mechanical strength of the nanoplates has improved in the LiFe_{0.5}Mn_{0.5}PO₄, similar to LiFePO₄. Even the morphologies of LiFePO₄ and LiFe_{0.5}Mn_{0.5}PO₄ look quite similar with selfassembly of nanoplates (see Figs. 1b and 5e) whereas LiMnPO₄ forms isolated nanoplates (Fig. 5b). Thus, the morphology of LiFe_{1-x}Mn_xPO₄/C (x=0, 0.5, and 1) is found to be sensitive to their high storage performance.

Fig. 5 LMnPO₄/C nanoplates: a PXRD pattern, b FESEM image with *scale bar* 100 nm, and c galvanostatic charge–discharge cycling curves. LiFe_{0.5}Mn_{0.5}PO₄/C nanoplates: d PXRD pattern, e FESEM image with *scale bar*, 1 μ m, f galvanostatic charge–discharge cycling curves

Conclusion

We have synthesized nanoplates of LiFePO₄ with 5-nm-thin uniform carbon coating by solvothermal method, and also we have extended the synthetic strategy to prepare the nanoplates of LiMnPO₄/C and LiFe_{0.5}Mn_{0.5}PO₄/C. The thickness along the *b*-axis is found to be 30–40 nm in case of LiFePO₄/C, such morphology favors short diffusion lengths for Li⁺ and e⁻, resulting in high rate performances. Thus, we have demonstrated that the Li⁺ diffusion along the *b*-axis and conductive surface coating are crucial for the high rate storage performances of LiFePO₄/C as cathode materials in lithium-ion batteries in the light of present demands for high-power applications such as electrical vehicle and power tools.

Acknowledgements We thank the Ministry of Education, Singapore, for funding through NUS FRC Grant No. R143-000-283-112 and FRC Grant No. R265-000-274-133. The authors also thank Dr. Nagarathinam Mangayarkarasi, NUS for their valuable comments, and Dr. Sudip Batabyal, Department of Chemistry, NUS for help in SEM analysis. Saravanan would like to thank NUS for the NUSNNI Graduate Scholarship.

References

- 1. Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) J Electrochem Soc 144:1188–1194
- Chung SY, Blocking JT, Ching YM (2002) Nat Matters 1:123– 128
- 3. Herle PS, Ellis B, Coombs N, Nazar LF (2004) Nat Matters 3:147–152
- Rousse G, Carvajal JR, Patoux S, Masquelier C (2003) Chem. Mater Des 15:4082–4090
- Yamada A, Koizumi H, Nishimura SI, Sonoyama N, Kanno R, Yonemura M, Nakamura T, Kobayashi Y (2006) Nat Matters 5:357–360
- 6. Andersson AS, Thomas JO (2001) J Power Sources 97-98:498-502
- Hu YS, Guo YG, Dominko R, Gaberscek M, Jamnik J, Maier J (2007) Adv. Mater Des 19:1963–1966
- 8. Ravet N, Abouimrane A, Armand M (2003) Nat Matters 2:702
- Ojczyk W, Marzec J, Wierczek KS, Zajac W, Molenda M, Dziembaj R, Molenda J (2007) J Power Sources 173:700–706
- Delacourt C, Laffont L, Bouchet R, Wurm V, Leriche JB, Morcrette M, Tarascon JM, Masquelier C (2005) J Electrochem Soc 152:A913–A921
- Amin R, Balaya P, Maier J (2007) Electrochem Solid-State Lett 10:A13–A16
- Morgan D, Van der Ven A, Ceder G (2004) Electrochem Solid-State Lett 7:A30–A32
- Maxisch T, Zhou F, Ceder G (2006) Phys Rev B 73:104301– 104306
- Islam MS, Driscoll DJ, Fisher CAJ, Slater PR (2005) Chem Mater 17:5085–5092
- 15. Fisher CAJ, Islam MS (2008) J Mater Chem 18:209–1215
- Huang H, Yin SC, Nazar LF (2001) Electrochem Solid-State Lett 4:A170–A172

- 17. Chen Z, Dahn JR (2002) J Electrochem Soc 149:A1184-A1189
- Moskon J, Dominko R, Korosec RC, Gaberscek M, Jamnik J (2007) J Power Sources 174:683–688
- Ait Salah A, Mauger A, Zaghib K, Goodenough JB, Ravet N, Gauthier M, Gendron F, Julien CM (2006) J Electrochem Soc 153:A1692–A1701
- Saravanan K, Reddy MV, Balaya P, Gong H, Chowdari BVR, Vittal JJ (2009) J Mater Chem 19:605–610
- Dominko R, Bele M, Gaberscek M, Remskar M, Hanzel D, Goupil JM, Pejovnik S, Jamnik J (2006) J Power Sources 153:274–280
- Gabersceka M, Dominko R, Bele M, Remskar M, Hanzel D, Jamnik J (2005) Solid State Ionics 176:1801–1805
- Yang S, Zavaliji PY, Wittingham MS (2001) Electrochem Commun 3:505–508
- Barker J, Saidi MY, Swoyer JL (2003) Electrochem Solid-State Lett 6:A53–A55
- 25. Kim DH, Kim J (2006) Electrochem Solid-State Lett 9:A439-A442
- Delacourt C, Poizot P, Levasseur S, Masquelier C (2006) Electrochem Solid-State Lett 9:A352–A355
- Arnold G, Garche J, Hemmer R, Strobele S, Vogler C, Mehrens MW (2003) J Power Sources 119–121:247–251
- Palomares V, Goni A, Muro IGD, Meatza ID, Bengoechea M, Miguel O, Rojo T (2007) J Power Sources 171:A484–A487
- Manthiram A, Vadivel Murugan A, Sarkar A, Muraliganth T (2008) Energy Environ Sci 1:621–638
- Vadivel Murugan A, Muraliganth T, Manthiram A (2008) Electrochem Commun 10:903–906
- Vadivel Murugan A, Muraliganth T, Manthiram A (2009) Inorg Chem 48:946–952
- Bilecka I, Hintennach A, Djerdj I, Novak P, Niederberger M (2009) J Mater Chem 19:5125–5128
- Chen G, Song X, Richardson TJ (2006) Electrochem Solid-State Lett 9:A295–A298
- Tanabe Y, Yamanaka J, Hoshi K, Migita H, Yasuda E (2001) Carbon 39:2347–2353
- Sadezky A, Muckenhuber H, Grothe H, Niessner R, Pöschl U (2005) Carbon 43:1731–1742
- Song SW, Reade RP, Kostecki R, Striebel KA (2005) J Electrochem Soc 153:A12–A19
- Kuo Fey GT, Lu TL, Wu FY, Li WH (2008) J Solid State Electrochem 12:825–833
- 38. Lua CZ, Feya GT, Kao HM (2009) J Power Sources 189:155-162
- Maccario M, Croguennec L, Desbat B, Couzi M, Cras F, Le Servantd L (2008) J Electrochemical Society 155:A879–886
- Doeff MM, Hu Y, McLarnon F, Kostecki R (2003) Electrochem Solid State Lett 6:A207–A209
- Doeff MM, Wilcox JD, Kostecki R, Lau G (2006) J Power Sources 163:180–184
- Hu Y, Doeff MM, Kostecki R, Finones R (2004) J Electrochem Soc 151:A1279–A1285
- Delacourt C, Poizot P, Morcrette M, Tarascon JM, Masquelier C (2004) Chem Mater 16:93–99
- 44. Yamada A, Kudo Y, Liu K (2001) J Electrochem Soc 148:A1153– A1158
- Vadivel Murugan A, Muraliganth T, Manthiram A (2009) J Electrochem Soc 156:A79–A83
- 46. Fang H, Li L, Yang Y, Yan G, Li G (2008) Chem Commun 1118– 1120
- Wang D, Buqa H, Crouzet M, Deghenghi G, Drezen T, Exnar I, Kwon NH, Miners JH, Poletto L, Graetzel M (2009) J Power Sources 189:624–628